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Untangling the role of one-carbon 
metabolism in colorectal cancer 
risk: a comprehensive Bayesian 
network analysis
Robin Myte1, Björn Gylling2, Jenny Häggström3, Jörn Schneede4, Per Magne Ueland5, 
Göran Hallmans6, Ingegerd Johansson7, Richard Palmqvist2 & Bethany Van Guelpen1

The role of one-carbon metabolism (1CM), particularly folate, in colorectal cancer (CRC) development 
has been extensively studied, but with inconclusive results. Given the complexity of 1CM, the 
conventional approach, investigating components individually, may be insufficient. We used a machine 
learning-based Bayesian network approach to study, simultaneously, 14 circulating one-carbon 
metabolites, 17 related single nucleotide polymorphisms (SNPs), and several environmental factors 
in relation to CRC risk in 613 cases and 1190 controls from the prospective Northern Sweden Health 
and Disease Study. The estimated networks corresponded largely to known biochemical relationships. 
Plasma concentrations of folate (direct), vitamin B6 (pyridoxal 5-phosphate) (inverse), and vitamin B2 
(riboflavin) (inverse) had the strongest independent associations with CRC risk. Our study demonstrates 
the importance of incorporating B-vitamins in future studies of 1CM and CRC development, and the 
usefulness of Bayesian network learning for investigating complex biological systems in relation to 
disease.

One-carbon metabolism (1CM) is a metabolic network centered around the folate and methionine cycles, essen-
tial for methylation and nucleotide synthesis (Fig. 1). 1CM is vital for genome stability and function and is the 
target of antimetabolite/antifolate chemotherapy. An important biological role for 1CM in cancer development 
is therefore highly plausible1.

The role of 1CM in colorectal cancer (CRC) development has been extensively studied. Findings include a 
possible dual role for the B-vitamin folate, depending on the dose and timing of exposure (i.e., protecting healthy 
mucosa but promoting undiagnosed lesions2,3). For other B-vitamins, the most notable finding is an inverse 
association between plasma concentrations of vitamin B6 (pyridoxal 5′ -phosphate, PLP) and CRC risk4, whereas 
results have been inconclusive for vitamin B2 (riboflavin) and B12 (cobalamin) status5. For metabolites in the 
transsulfuration pathway, such as homocysteine and cysteine, results have been inconclusive6–11. For metabolites 
primarily involved in methylation, such as methionine and factors in the choline oxidation pathway, inverse asso-
ciations between colorectal adenoma and CRC risk have been observed12–15. To our knowledge, dietary intake 
or circulating levels of serine and glycine, important one-carbon group donors to tetrahydrofolate (THF) in the 
folate cycle (Fig. 1), have not been studied in relation to CRC risk, but implications in cancer cell proliferation 
have been observed in vitro16. Several single nucleotide polymorphisms (SNPs) in genes coding for enzymes in 
1CM have also been studied17, with the most important finding being a reduced risk of CRC in TT genotype 
carriers of the methylenetetrahydrofolate reductase (MTHFR) 677C >  T polymorphism18. Randomized clinical 
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intervention trials on the effects of folic acid, vitamin B6, or vitamin B12 supplementation on colorectal adenoma 
or cancer occurrence have been inconclusive19–21.

The varying presence, strength, and even direction of the observed associations between compounds of 1CM 
and CRC risk may have several explanations, for instance, variation in levels and timing of exposure between 
study populations18. Furthermore, the commonly used method of univariate modeling of single variables, typi-
cally in multivariable models adjusting for potential confounders, may miss higher-order interactions and medi-
ating effects. This is particularly important for 1CM, given the complexity of input (diet, supplementation, and 
fortification), interrelationships, gene-environment interactions, and output (nucleotide synthesis, methylation, 
inflammation, oxidation, and energy metabolism22–24).

To account for the complexity of 1CM in molecular epidemiology, mathematical or pathway-based mode-
ling based on prior biochemical knowledge have been successfully applied25. However, no empirical study using 
observational data has so far addressed the complex interplay of plasma markers of 1CM, related SNPs, and 
environmental factors in relation to cancer risk. A Bayesian network (BN) is a graphical representation showing 
all independent relations among a set of variables (a network of nodes, representing variables, connected by lines 
referred to as edges, representing independent relations between variables). A BN can be estimated - or learned -  
from data using machine learning algorithms26. This methodology has previously been applied in studies of com-
plex systems in several scientific disciplines26, including epidemiology27,28. Using BNs in studies of 1CM and 
cancer could provide a more comprehensive understanding of the relation between 1CM and carcinogenesis.

In this study of 613 colorectal cancer cases with prediagnostic blood samples and 1190 matched controls from 
the population-based Northern Sweden Health and Disease Study (NSHDS), we used Bayesian network learning 
to investigate, simultaneously, the relative contributions of and interplay among a comprehensive panel of 14 pre-
diagnostic plasma one-carbon metabolites, 17 SNPs involved in 1CM, and a set of other environmental factors, 
in relation to CRC risk.

Results
Baseline characteristics. Baseline characteristics for case participants and matched control participants, 
and clinical characteristics for the cases, are presented in Table 1. There was a slightly larger proportion of 
ex-smokers and a lower proportion of never smokers among cases compared to controls. Body mass index (BMI), 
alcohol intake, physical activity (occupational and recreational), and B-vitamin intakes were similar for cases and 
controls. Vitamin supplement usage was low among both cases and controls. The median age at diagnosis was 

Figure 1. One-carbon metabolism. Graphical representation of the main aspects of one-carbon metabolism 
centered around the folate and methionine cycles. Abbreviations: BHMT, betaine homocysteine S- 
methyltransferase; CBS, cystathionine β -synthase; CH2THF, 5,10-methylenetetrahydrofolate; CH3THF, 
5-methyltetrahydrofolate; CHOTHF, formyltetrahydrofolate; CHTHF, methenyltetrahydrofolate; CTH, 
cystathionine γ -lyase (also abbreviated CSE); DHF, dihydrofolate; DHFR, dihydrofolate reductase; dTMP, 
deoxythymidine 5′ -monophosphate; dUMP, deoxyuridine 5′-monophosphate; FOLR, folate receptor; 
MTHFD, methylenetetrahydrofolate dehydrogenase; MTHFR, 5,10-methylenetetrahydrofolate reductase; 
MTR, methionine synthase; MTRR, methionine synthase reductase; RFC, reduced folate carrier; SAM, 
S-adenosylmethionine; SAH, S-adenosylhomocysteine; SHMT, serine hydroxymethyltransferase; TCN2, 
Transcobalamin II; THF, tetrahydrofolate; TYMS, thymidylate synthase.
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Cases (n = 613) Controls (n = 1190)

Pb Missing (%)N Median (IQRa) or % N Median (IQRa) or %

Participant characteristics

Age at sampling (years) 613 59.8 (40.1–67.8) 1190 59.7 (40.0–67.8) 0

Sex, female 360 59% 703 59% 0

Cohort, VIP 479 78% 931 78% 0

Fasting status 0

  < 4 hours 141 23% 272 23%

  4–8 hours 107 17% 202 17%

  ≥ 8 hours 365 60% 716 60%

Smoking status 0

  Current 114 19% 239 20% 0.01

  Ex- 136 22% 197 17%

  Never 363 59% 754 63%

Body mass index (BMI, kg/m2) 591 25.7 (23.5–28.2) 1147 25.6 (23.3–28.1) 0.43 4

Alcohol intake (g/day)c 385 2.4 (0.2–5.8) 754 2.3 (0.3–5.7) 0.94 13c

Recreational physical activityc,d 3c

  1 221 45% 354 40% 0.92

  2 117 25% 240 27%

  3 81 17% 168 19%

  4 29 6% 68 7%

  5 30 7% 64 7%

Occupational physical activityc,e 0.94 13c

  1 90 21% 163 20%

  2 77 18% 155 19%

  3 111 27% 223 27%

  4 102 25% 229 28%

  5 36 9% 45 6%

eGFR (ml/min/1.73 m2) 596 62.0 (52.3–73.0) 1149 61.7 (50.9–72.3) 0.48 4

Neopterin (nmol/L) 608 9.7 (8.2–11.9) 1186 9.4 (8.0–11.4) 0.02 0.5

KTr 613 0.023 (0.019–0.026) 1190 0.022 (0.019–0.026) 0.23 0

Vitamin supplement usec 0c

  Last 14 days 32 7% 73 8% 0.49

  Last year 40 8% 105 11% 0.11

Dietary B-vitamin intakesc,f

Folate (μ g/MJ) 359 29.9 (25.3–36.0) 697 29.8 (25.3–36.0) 0.81 6c

Vitamin B6 (mg/MJ) 359 0.27 (0.22–0.31) 697 0.26 (0.23–0.30) 0.98 6c

Vitamin B2 (riboflavin, mg/MJ) 359 0.19 (0.16–0.22) 697 0.19 (0.16–0.22) 0.38 6c

Vitamin B12 (cobalamin, μ g/MJ) 359 0.61 (0.46–0.78) 697 0.59 (0.48–0.78) 0.89 6c

Plasma metabolites

Folate (nmol/L) 613 7.3 (4.9–10.4) 1190 7.2 (4.6–10.2) 0.49 0

Vitamin B6 (PLP, nmol/L) 608 35.9 (25.9–51.5) 1186 38.2 (28.0–51.5) 0.08 0.5

Vitamin B2 (riboflavin, nmol/L) 608 10.8 (7.4–16.0) 1186 11.8 (7.9–17.9) 0.002 0.5

Vitamin B12 (cobalamin, nmol/L) 603 413 (337–498) 1173 426 (353–501) 0.02 2

Homocysteine (μ mol/L) 613 10.1 (8.4–11.9) 1190 9.9 (8.2–11.7) 0.15 0

Cystathionine (μ mol/L) 613 0.15 (0.12–0.21) 1190 0.16 (0.12–0.22) 0.65 0

Cysteine (μ mol/L) 613 275 (253–299) 1190 276 (255–298) 0.74 0

Glycine (μ mol/L) 613 227 (194–265) 1190 225 (194–277) 0.96 0

Serine (μ mol/L) 613 108 (96–122) 1190 110 (96–124) 0.43 0

Methionine (μ mol/L) 613 25.9 (23.2–29.1) 1190 26.4 (23.4–29.9) 0.07 0

Choline (μ mol/L) 606 8.6 (7.6–9.7) 1189 8.6 (7.6–9.8) 0.83 0.4

Betaine (μ mol/L) 606 29.9 (25.7–34.4) 1189 30.8 (26.1–35.5) 0.05 0.4

DMG (μ mol/L) 606 3.6 (2.9–4.4) 1189 3.6 (3.0–4.4) 0.79 0.4

Sarcosine (μ mol/L) 613 1.5 (1.1–2.0) 1190 1.5 (1.2–2.1) 0.54 0

Case characteristics

Age at diagnosis (years) 613 65.2 (59.3–70.2) 0

Continued
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65.2 years. Median follow-up time between blood sampling of the cases and their CRC diagnosis was 8.2 years. 
The tumors were roughly equally distributed by site (30% proximal, 35% distal, and 35% rectal) and stage (53% 
I/II and 47% III/IV).

Baseline plasma metabolite concentrations differed between cases and controls for some metabolites, but only 
vitamin B2 differed significantly after Bonferroni correction for multiple testing (adjusted significance threshold: 
0.05/14 ≈  0.004, Table 1). Spearman correlations between plasma concentrations of one-carbon metabolites are 
presented in Supplementary Fig. S1. Four groups of more highly correlated metabolites were apparent: (1) metab-
olites in the choline pathway (choline, betaine, DMG, and sarcosine), (2) B-vitamins (folate, vitamin B6, B2, and 
B12), (3) serine and glycine, and (4) methionine and metabolites in the transsulfuration pathway (methionine, 
homocysteine, cystathionine, and cysteine). Correlations were highest between directly related metabolites, such 
as choline and betaine (r =  0.40) and glycine and serine (r =  0.52). Total homocysteine was negatively correlated 
with both folate (r =  − 0.37) and vitamin B12 (r =  − 0.28). Methionine and cystathionine were also correlated 
to metabolites in the choline pathway (r =  0.17–0.28). The correlations were essentially the same for cases and 
controls.

Genotype distributions did not differ between cases and controls for any SNP (Supplementary Table S1). 
No SNPs showed significant deviations from Hardy-Weinberg equilibrium (adjusted significance threshold: 
0.05/34 ≈  0.0015, Supplementary Table S1).

Bayesian network learning. The combined BN estimated from data using three different algorithms, 
including all metabolites, SNPs, and other variables in relation to CRC, is presented in Fig. 2a. An edge (i.e., 
drawn line) between two variables implies an association independent of all other variables in the network. The 
networks estimated using the Hill-climbing (HC) algorithm had more edges compared to the networks estimated 
using the Incremental Association Markov Blanket (IAMB) and Min-Max Hill-climbing (MMHC) algorithms. 
Regarding independent associations between CRC and other variables, the overall pattern was the same for all 
algorithms but with slightly stronger associations for more variables in the HC networks (measured by edge 
confidence, i.e., the frequency of the edge in the 1000 bootstrap networks) (Fig. 2b). The edge confidence signif-
icance thresholds that needed to be met for a relation to be included in the networks were essentially the same 
(HC =  49%, IAMB =  49%, MMHC =  50%).

In the BNs, plasma concentrations of the metabolites were related to each other mainly according to known 
biochemical relationships (Fig. 2a). Homocysteine levels were related to the MTHFR 677C >  T polymorphism. 
No other SNP was strongly associated with the plasma concentrations of any of the metabolites. SNPs within the 
same genes were associated, suggesting linkage disequilibrium. Some independent associations between environ-
mental factors and metabolites were present. For instance, vitamin B6 was related to smoking and cysteine was 
related to BMI. The relation between sampling year and sarcosine (manifested as slightly higher levels in partic-
ipants sampled in later years) was likely an artifact stemming from spurious amounts of sarcosine in the EDTA 
tubes used during that period. The BNs also picked up associations between background variables inherent to the 
study design (e.g., between cohort and sex, age, fasting status, and sampling year).

Folate, vitamin B6, and vitamin B2 had the strongest independent associations with CRC risk, with edge confi-
dences consistently higher compared to other variables for all algorithms (Fig. 2b). Yet, the edge confidences were 
generally not above the estimated significance thresholds. The RFC1 80G >  C polymorphism displayed a higher 
edge confidence to CRC compared to other SNPs, though it did not meet the threshold (Fig. 2b). Removing the 
metabolites from the BNs did not markedly affect the associations for SNPs.

Cases (n = 613) Controls (n = 1190)

Pb Missing (%)N Median (IQRa) or % N Median (IQRa) or %

Follow-up time (years) 613 8.2 (4.7–11.9) 0

Tumor site 0.2

  Right colon 183 30%

  Left colon 215 35%

  Rectum 214 35%

Tumor stage 5

  I-II 308 53%

  III-IV 276 47%

Table 1.  Baseline characteristics. Abbreviations: PLP, pyridoxal 5′  phosphate – DMG, Dimethylglycine – MJ, 
Mega Joules – eGFR, estimated glomerular filtration rate (by Cockcroft–Gault formula) – KTr, kynurenine/
tryptophan ratio. aIQR: Interquartile range (25th-75th percentile). bFrom test for difference in distribution 
between cases and controls. Mann-Whitney U tests for continuous variables, Chi-square tests for categorical 
variables. Not calculated for matching variables. Bonferroni-corrected threshold for significance differences 
among metabolites =  0.05/14 ≈  0.004. cVariables available in the VIP cohort only. dSelf-reported exercise 
frequency during leisure time on a scale from 1–5, where 1: never; 2: every now and then - not regularly; 3: 
1–2 times/week; 4: 2–3 times/week; 5: more than 3 times/week. eSelf-reported on a scale from 1–5, where 1: 
sedentary or standing work; 2: light but partly physically active; 3: light and physically active; 4: sometimes 
physically strenuous; 5: physically strenuous most of the time. fEstimated from self-administered, semi-
quantitative food frequency questionnaires (FFQs) designed to measure intakes during the previous year in 
mass/day, divided by total energy intake.
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Edge confidences for the strongest independent associations between 1CM variables and CRC risk (BNs esti-
mated with the HC-algorithm) are presented for subgroups based on sex, follow-up, and tumor site and stage 
in Supplementary Table S2. In sex-specific BNs, the most apparent difference was a stronger relation between 
folate and CRC in men (Pheterogeneity =  0.004). Folate was mainly directly associated to stage III&IV cancers 
(Pheterogeneity =  0.04). Vitamin B12 was associated with rectal cancer in tumor site-specific BNs, though the test for 
heterogeneity was not significant (Pheterogeneity =  0.15). The remaining structure did not markedly differ between 
subgroup networks and the variables with the strongest relation to CRC or CRC subgroup were largely the same 
regardless of algorithm.

Univariate and interaction analyses. Plasma vitamin B2 concentrations were inversely related to CRC 
risk (highest vs. lowest quartile OR: 0.63, 95% CI: 0.46–0.85, Ptrend =  0.004, Fig. 3). The corresponding average 
absolute risk reduction was approximately 300 cases per 100 000 in the highest versus lowest quartile. Adjusting 
for potential confounders, including folate and vitamin B6, did not markedly change the risk estimates. Univariate 
analyses of the other variables with the strongest relationship to CRC, i.e. folate and vitamin B6, have either been 
published (lower CRC risk at lower plasma folate concentrations6,11) or submitted to a scientific journal (higher 
CRC risk at lower plasma concentrations of vitamin B6, data not shown here).

We investigated 2-way interactions between the most influential variables: folate, vitamin B6, and vitamin B2. 
We observed no interaction between folate and vitamin B6 or folate and vitamin B2 (Pinteraction =  0.29 and 0.16, 
respectively), whereas vitamin B2 and B6 exhibited a significant interaction (Pinteraction =  0.004). Table 2 contains 
ORs for CRC risk by combinations of vitamins B2 and B6 levels estimated with the fitted parameters of the BN 
and conditional logistic regression including interaction terms (with plasma concentrations divided in tertiles to 
avoid spurious associations). The inverse association between vitamin B2 and CRC risk was attenuated at higher 
levels of vitamin B6, with the highest risk observed in the low-low category. ORs calculated from the BN were 
approximately the same as ORs from conditional logistic regression models.

Sensitivity analyses. Since categorization of plasma metabolites may result in loss of information, we esti-
mated BNs using finer categorization (septiles, representing a balance between increasing the number of catego-
ries and maintaining adequate numbers in each category). This analysis did not markedly change the resulting 
networks, with the exception of a moderate increase in confidence for the independent association between vita-
min B2 and CRC.

Since undiagnosed cancer may affect plasma metabolite levels at the time of sampling (reverse causation), we 
estimated BNs excluding cases diagnosed within 1 years (25 cases) or 2 years (60 cases) of sampling, and their 
corresponding matched controls. This analysis did not markedly change the resulting networks.

As plasma metabolite concentrations can vary by fasting status, we estimated BNs excluding participants with 
fasting status less than 4 hours (141 cases and 272 controls). This analysis did not markedly change the resulting 
networks. In univariate analyses, the associations for folate, vitamin B6, and vitamin B2 did not differ by fasting 
status (Pheterogeneity =  0.35, 0.80, and 0.28, respectively).

Discussion
In this population-based case-control study, a comprehensive panel of metabolites and SNPs involved in 1CM 
along with several environmental factors were analyzed simultaneously by Bayesian network learning to study 
interrelations and relative contributions to CRC risk. The associations represented in the estimated networks 
largely corresponded to plausible biochemical relationships. Plasma concentration of folate, vitamin B6 (PLP), 
and vitamin B2 (riboflavin) had the strongest independent relations to CRC risk. In multivariable, univariate 
analyses, vitamin B2 demonstrated a linear inverse association with CRC risk. Vitamin B6 significantly modified 
this relation.

This is the first time Bayesian network learning, or any similar multivariate statistical approach, has been 
applied to investigate 1CM in relation to any cancer. Bayesian network learning allows many variables to be 
modeled simultaneously to study all relations in a system. In our study, the estimated BNs identified known 
and biologically plausible associations between factors, which underscores the validity of the method. Bayesian 
network learning does not replace traditional methods but is a valuable exploratory tool for understanding inde-
pendent associations among multiple variables and to facilitate proper selection of variables to consider in further 
univariate analyses. This is particularly relevant in studies of biological systems with many highly interrelated 
environmental and genetic factors, such as 1CM.

The independent associations between prediagnostic plasma concentrations of folate, vitamin B6, and vitamin 
B2 and CRC risk suggest that they may be the 1CM components of greatest importance in colorectal tumori-
genesis. Low plasma folate concentrations were associated with a decreased CRC risk (previously published6,11), 
whereas low plasma concentrations of vitamins B6 and B2 were associated with an increased CRC risk. These 
observations are consistent with previous findings from univariate modeling, both in our data6,11 and other stud-
ies5. The relative importance and interconnectedness of B-vitamins in cancer development are also consistent with 
results from animal studies and mathematical modeling of 1CM29. Folate and vitamins B2 and B6 are involved 
in DNA synthesis and methylation, biological processes important for genome stability and repair1. Since these 
functions are critical in both the healthy colorectum and in tumorous lesions, a cancer-promoting effect has been 
proposed for folate2,3, consistent with the direct association with CRC risk observed in this study. As cofactors in 
the kynurenine pathway23,24,30, both B6 and B2 are linked to inflammation, a process known to influence cancer 
development31, though biomarkers of systemic inflammation available in this study (plasma neopterin and the 
kynurenine/tryptophan ratio) were not strongly associated with either B-vitamin, nor did they alter the relation 
between the B-vitamins and CRC risk. Vitamin B6 and B2 are also cofactors in a large number of other coenzyme 
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Figure 2. Bayesian network learning results (a) Bayesian network of plasma one-carbon metabolites divided 
into quartiles, related SNPs, and other environmental variables in relation to colorectal cancer (CRC) estimated 
with the HC algorithm. Analyses were made on 560 cases and 1090 controls (after excluding 53 cases and 100 
controls with incomplete 1CM data). Edges in black were also present in IAMB and/or MMHC networks, whereas 
gray edges were present only in the HC network. Thicker edges indicate higher confidence (i.e., the frequency of 
the relation in the 1000 bootstrap networks). The estimated confidence thresholds for inclusion in the networks 
were: HC =  49%, IAMB =  50%, MMHC =  51%. The strongest independent associations with CRC risk, with edge 
confidences consistently higher compared to other variables for all algorithms, are marked with dashed edges. (b) 
Edge confidences of relations between CRC and 1CM variables for networks learned using the HC, IAMB, and 
MMHC algorithms. A higher edge confidence indicates a stronger independent association. Abbreviations: PA, 
physical activity; eGFR, estimated glomerular filtration rate; KTr, kynurenine/tryptophan ratio.



www.nature.com/scientificreports/

7Scientific RepoRts | 7:43434 | DOI: 10.1038/srep43434

reactions in macronutrient metabolism5, and vitamin B6 has been suggested to reduce oxidative stress, colon 
cancer cell proliferation, and angiogenesis32. The inverse associations between vitamin B6 and B2 and CRC risk 
in this study may, therefore, reflect other mechanisms than 1CM.

There were some differences in the most influential variables when we estimated BNs on stratified data. 
Independent associations between plasma folate concentrations and CRC were observed in men and for stage III 
and IV CRC, which is not entirely consistent with our previous findings based on multivariable, univariate mode-
ling6,11. The independent association between plasma vitamin B12 concentrations and rectal cancer risk supports 
our previous findings6,11,33. Structural learning algorithms are less efficient in smaller sample sizes, especially in 
networks with many interrelations34. The results of the subgroup analyses must, therefore, be verified in larger 
data sets.

Among the examined SNPs, the only independent association observed was between the MTHFR 677C >  T 
polymorphism and plasma homocysteine levels. Interestingly, none of the polymorphisms exhibited a strong 
independent relation to CRC risk. In previous univariate analyses of the same data, we found a small CRC risk 
reduction in individuals with the variant CT or TT genotype of the MTHFR 677C >  T polymorphism11,35. The 
largely null findings for the SNPs in this study might, therefore, reflect a mediating effect through altered metab-
olite levels. This would be consistent with the premise of Mendelian randomization studies, for which MTHFR 
677C >  T is a commonly studied example. However, our results were not markedly affected by removing the 
plasma metabolites from the BNs.

The main limitation of this study was the analysis of only one blood sample from each participant. On the 
other hand, issues of storage stability and reproducibility of the included biomarkers are well studied and unlikely 
to have impacted the results markedly36,37. Although common practice, categorizing continuous variables (e.g., 

Figure 3. Risk of CRC by vitamin B2 status. Odds ratios (OR) were calculated by conditional logistic 
regression. Absolute risk differences (RD) were determined using weighted maximum likelihood estimation. 
Quartiles of plasma concentrations of vitamin B2 (riboflavin, nmol/l) were based on the distribution among 
the controls participants. Confidence intervals for the RDs were calculated by bootstrapping. Crude OR and 
RD estimates were adjusted only for the matching variables, using risk set stratification in conditional logistic 
regression and by including them as covariates in the weighted maximum likelihood models, respectively. 
Adjusted estimates were additionally adjusted for BMI, smoking status, occupational and recreational activity, 
alcohol intake, and plasma folate and vitamin B6 (PLP) concentrations. Ptrend was calculated by modeling log-
transformed plasma concentrations in conditional logistic regression models.

Vitamin B2a

Vitamin B6a

Tertile 1 (<30.8) Tertile 2 (30.8–45.6) Tertile 3 (≥45.6)

Tertile 1 (< 9.0)

 Cases/controls (n) 105/148 76/151 46/97

 OR-BNb ref 0.78 0.80

 OR-CLR (95% CI)c ref 0.70 (0.48, 1.02) 0.67 (0.44, 1.04)

Tertile 2 (9.0–15.3)

 Cases/controls (n) 78/138 64/134 73/123

 OR-BNb 0.77 0.69 0.79

 OR-CLR (95% CI)c 0.78 (0.54, 1.14) 0.66 (0.44, 0.99) 0.83 (0.56, 1.21)

Tertile 3 (≥ 15.3)

 Cases/controls (n) 38/110 50/110 78/175

 OR-BNb 0.53 0.70 0.61

 OR-CLR (95% CI)c 0.48 (0.31, 0.75) 0.63 (0.41, 0.97) 0.62 (0.43, 0.90)

Pinteraction
d =  0.004

Table 2.  Risk of CRC by vitamin B2 and B6 status. OR: Odds ratio - CI: Confidence interval - BN: Bayesian 
Network - CLR: conditional logistic regression – PLP: Pyridoxal 5′  phosphate. aConcentrations in nmol/l, 
cut-offs based on the distribution of the controls. bEstimated using fitted parameters of the estimated BN, 
additionally adjusted for the matching variables. cEstimates from a CLR-model adjusted for the matching 
variables by risk set stratification. Adjusting for other potential confounders had essentially no effect on the 
estimates. dCalculated by modeling log-transformed variables as multiplicative interaction terms in a CLR-
model.
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dividing plasma concentrations into quartiles) results in loss of information26. However, in a sensitivity analysis, 
BNs estimated using septile categories yielded similar results. Alcohol intake and physical activity were only 
available for the VIP cohort, which may have caused residual confounding. The majority of the data were from 
VIP (78%), and we included several other related environmental factors (e.g., BMI, smoking status, and inflam-
matory markers). A large impact of residual confounding on the main findings is, therefore, unlikely. Last, we 
were not able to validate the estimated network in an independent data set. However, we evaluated the robustness 
of our associations by a bootstrapping approach, and both known biochemical relationships and associations 
between background variables inherent to the study design were largely picked up by the Bayesian networks. 
Furthermore, the variables with the strongest independent relations to CRC risk in the networks (folate, B6, and 
B2), demonstrated associations and interrelationships consistent with previous reports, and were also significant 
in traditional univariate logistic regression models. Taken together, these observations support the validity of our 
findings.

The main strength of our study was the application, for the first time in a study of cancer risk, of multivariate 
statistical methods to a large panel of well-characterized circulating one-carbon metabolites, SNPs, and environ-
mental factors. We tested several structural learning algorithms, yielding similar results regarding the strongest 
relations to CRC risk. In the overall network structure, networks estimated with the HC algorithm resulted in 
more edges than the IAMB and MMHC algorithms. This is likely explained by the higher sensitivity and better 
overall performance of the HC algorithm compared to the IAMB and MMHC algorithms, previously demon-
strated in simulations34. Another strength of the study was the use of prediagnostic blood samples of high quality 
with respect to the collection, handling, and storage, including a majority of fasting participants. Follow-up time 
from sampling to CRC diagnosis was long (median 8.2 years), which minimized the risk of reverse causation. 
Furthermore, the study population from northern Sweden is generally characterized by low folate levels38–40. This 
allowed us to study the effects of much lower plasma folate concentrations in relation to CRC risk compared to 
other studies40,41.

In conclusion, this is the first study to address the complexity of 1CM in cancer risk in humans. We used 
multivariate Bayesian network learning to estimate, simultaneously, the associations of a comprehensive panel 
of prediagnostic plasma metabolites and SNPs involved 1CM and the risk of CRC. The associations between 
components of 1CM and CRC risk were mainly determined by variation in folate, vitamin B6, and vitamin B2 
status, suggesting that these may be the elements of 1CM with the greatest potential impact for CRC prevention 
strategies. Our study demonstrates the importance of incorporating these B-vitamins in future studies of 1CM in 
colorectal cancer development, and the usefulness of Bayesian network learning in studies of complex biological 
systems in relation to disease.

Methods
Study design and cohorts. The present work is based on a nested case-control study within the Northern 
Sweden Health and Disease Study (NSHDS). Two population-based cohorts were used, the Västerbotten 
Intervention Programme (VIP, 78% of the study participants, men and women) and the Mammography 
Screening Project in Västerbotten (MSP, 22% of the study participants, all women). Both cohorts have previously 
been described in detail42. As of March 31, 2009, the final date for case identification for the present study, the VIP 
included 83 621 individuals and 114 793 blood samples, and the MSP 28 802 women and 54 787 blood samples. 
Selection bias in the VIP has been found to be low43, and the population-based nature of the VIP cohort is sup-
ported by comparisons of cancer incidence rates44.

Study participants. CRC cases diagnosed between October 17, 1986, and March 31, 2009, who had donated 
prediagnostic blood samples, were identified by linkage with the Cancer Registry of Northern Sweden (ICD-10 
18.0 and 18.2–18.9 for colon, 19.9 and 20.9 for rectum), with essentially complete inclusion. All cases, as well as 
tumor data, were verified by a single pathologist specialized in gastrointestinal pathology. Patient records were 
used to verify tumor site. Exclusion criteria included: previous cancer diagnosis other than non-melanoma skin 
cancer, insufficient volume of plasma sample available, prioritizing to other studies, location of primary tumor 
outside the colon/rectum, serious infectious diseases (for lab staff safety, one case excluded), or no matching 
control obtainable.

Two controls were randomly selected for each case, matched by sex, age at and year of blood sampling and data 
collection, fasting status, and cohort. The exclusion criteria for the controls were the same as for cases, with the 
additional requirement that all controls had to be alive and with no diagnosed cancer other than non-melanoma 
skin cancer at the time of diagnosis of their index cases.

A total of 613 cases and 1190 controls were in included in the study after exclusions. In total, 127 participants 
were excluded (81 cases and 46 controls), mainly due to insufficient blood sample volume or to the sample being 
prioritized to other studies. A detailed description of the exclusions is available elsewhere35.

The subjects in the present study have previously been separately analyzed for eight of the plasma metabo-
lites (folate, cobalamin, homocysteine, methionine, choline, betaine, dimethylglycine, and sarcosine), four of 
the polymorphisms (MTHFR 677C >  T and 1298A >  C, BHMT 742G >  A, and MTR 2756A >  G)6,11,33,35, and for 
subjects with index case diagnosis 1986–2003, also the RFC1 80G >  A and FOLR1 1413G >  A polymorphisms35,45, 
in relation to colorectal cancer (CRC) risk. A total of 17 CRC cases and 33 controls in the present study were also 
included in previous studies within the European Prospective Investigation into nutrition and Cancer (EPIC)14,46.

Ethical considerations. The study protocol was approved by the Research Ethics Committee of Umeå 
University, Umeå, Sweden. All participants gave a written informed consent. All analyses were conducted in 
accordance with relevant guidelines and regulations.
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Blood sampling and laboratory analyses. Plasma from venous blood samples in the NSDHS is ali-
quoted and cryopreserved at − 80 °C within one hour of collection, or at − 20 °C for at most one week prior 
to long-term storage at − 80 °C. In the VIP cohort, samples are collected in the morning, and only 34 of 1410 
participants (2%) had fasted less than 4 hours and 295 (21%) less than 8 hours. In the MSP cohort, samples were 
collected throughout the day, and 379 of 393 participants (96%) had fasted less than 4 hours. Thus, in the total 
material, 60% of the participants had fasted for more than 8 hours, 17% had fasted 4–8 hours, and 23% had fasted 
less than 4 hours. Concentrations of 1CM metabolites in EDTA plasma and polymorphisms involved in 1CM 
were analyzed at Bevital AS (Bergen, Norway)47. Plasma concentrations of cystathionine, vitamin B2 (riboflavin), 
vitamin B6 (PLP), methionine, choline, betaine, dimethylglycine, creatinine, neopterin, and tryptophan were 
measured with liquid chromatography–mass spectrometry methods (between-day coefficient of variation (CV): 
3–13%)48. Plasma concentrations of total homocysteine, total cysteine, serine, glycine, sarcosine, and kynurenine 
were measured using an isotope dilution gas chromatography–mass spectrometry method (between-day CV: 
2–9%)49. Folate and vitamin B12 (cobalamin) concentrations were determined with a microbiological method 
using Lactobacillus casei and Lactobacillus leichmannii, respectively, which was adapted to a microtiter plate for-
mat and carried out by a robotic workstation (between-day CV: 5%)50,51. Single nucleotide polymorphisms were 
determined using MALDI-TOF mass spectrometry (estimated average error rate of ≤ 0.1% in duplicated sam-
ples)52. The genotyping method has previously been independently verified using RFLP or Taqman real-time 
PCR52. Samples were analyzed in case-control sets, with random positioning of the case. The investigators and 
laboratory staff were blinded to case and control status.

Variables. Plasma concentrations of 14 metabolites and 17 SNPs in 13 genes involved in, or related to, 1CM 
were considered for the Bayesian network learning. The panel was designed based on previous studies of 1CM 
and CRC risk5,17, and to capture a wide array of aspects of one-carbon metabolism while maintaining an adequate 
marker stability and reproducibility36,37. Included metabolites were: folate, vitamin B6 (PLP), vitamin B2 (ribo-
flavin), vitamin B12 (cobalamin), homocysteine, cystathionine, cysteine, glycine, serine, methionine, choline, 
betaine, dimethylglycine, and sarcosine. Included SNPs were: MTHFR 677C >  T and 1298A >  C, CBS 844ins68 
and 699C >  T, MTR 2756A >  G, MTRR 66A >  G and 524C >  T, BHMT 742G >  A, TCN2 67A >  G and 776C >  G, 
RFC1 80G >  A, FOLR1 1413G >  A, MTHFD1 1958G >  A, CTH 1364G >  T, SHMT1 1420C >  T, DHFR 19 dele-
tion, and TYMS 6 deletion. Other environmental factors or background information included were: cohort (VIP 
or MSP), age at and year of blood sampling (quartiles), sex (male or female), fasting status (< 4, 4–8, ≥ 8 hours), 
smoking status (current, ex-, never smoker), body mass index (BMI) measured by a health professional (< 25, 
25–30, ≥ 30 kg/m2), estimated glomerular filtration rate (eGFR) calculated by the Cockcroft-Gault formula (based 
on plasma creatinine levels, age, sex and body weight, quartiles), and plasma concentrations of neopterin and 
the kynurenine/tryptophan ratio (KTr), both markers of immune activation53,54 (quartiles). For the VIP cohort, 
we also had self-reported alcohol intake (zero intake, above/below sex-specific median of self-reported, g/day), 
recreational physical activity (regular exercise frequency on a scale from 1–5, where 1: never; 2: every now and 
then - not regularly; 3: 1–2 times/week; 4: 2–3 times/week; 5: more than 3 times/week), and occupational physical 
activity (on a scale from 1–5, where 1: sedentary or standing work; 2: light but partly physically active; 3: light and 
physically active; 4: sometimes physically strenuous; 5: physically strenuous most of the time). For these VIP-only 
variables, observations within the MSP cohort were assigned to a separate “missing” category.

Plasma concentration variables were analyzed in quartile groups (cut-offs based on the distribution of the 
controls). The CBS 844ins68, TCN2 67A >  G, and FOLR1 1413G >  A SNPs were analyzed in two groups, common 
and variant genotype, because of low allele frequencies (4, 36, and 3 individuals with the homozygous variant gen-
otype respectively). All other SNPs were analyzed in three categories: common, heterozygous, and homozygous 
variant genotype.

Missing values for plasma metabolites and SNPs were assumed to be missing completely at random and were 
therefore omitted from the analyses (0–3% missing per variable). Missing values for the environmental factors 
were assigned to separate categories. Thus, the Bayesian network learning was conducted on 560 cases and 1090 
controls with complete 1CM data.

Statistical analyses. All computations were conducted in R v.3.2.455. Network visualizations were created 
using Cytoscape v.3.2.156. All statistical tests were two-sided with a significant threshold of 0.05.

Mann-Whitney U test or Chi-square tests were used to test for differences in variable distributions between 
cases and controls. Correlations between plasma metabolite variables in all subjects were calculated with 
Spearman’s correlation coefficient on pairwise complete observations. A hierarchical cluster analysis of the 
metabolites was conducted using correlation distances with complete linkage. Pearson’s χ 2-test was used to check 
if SNPs were in Hardy-Weinberg equilibrium for cases and controls separately when the expected cell count was 
above 5, otherwise Fisher’s exact test was used. The significance thresholds for the tests were corrected for multi-
ple testing with the Bonferroni method.

The BNs were estimated on discrete data with a model-averaging approach based on bootstrapping34. In 1000 boot-
strap samples, BNs were estimated with three different machine learning algorithms using the boot.strength function 
in the bnlearn R-package. Then, the final networks were obtained by averaging over the 1000 bootstrap networks using 
the averaged.network function. An edge was included if its edge confidence, defined as the frequency of occurrence 
of that relation among the 1000 bootstrap networks, was above a threshold based on observed confidence levels34. 
The three machine learning algorithms used in each bootstrap sample were the score-based Hill-climbing (HC), the 
constraint-based Incremental Association Markov Blanket (IAMB), and the hybrid Min-Max Hill-climbing (MMHC) 
algorithms. The scoring function for the HC and MMHC algorithms was the Akaike information score (AIC) and the 
conditional independence test for the IAMB and MMHC algorithms was the asymptotic χ 2 mutual information test.
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Univariate risk estimates in the form of odds ratios (ORs) for the 1CM variables with a pronounced relation 
to CRC in the BNs, and for which we have not previously published results or submitted results to a scientific 
journal, were computed with conditional logistic regression. Linear trends for the metabolites were tested by 
modeling log-transformed plasma concentrations. Absolute risk estimates, defined as marginal risk differences 
(RDs), were computed with a weighted maximum likelihood estimator using cumulative incidence data from the 
study cohort at large, and within groups defined by sampling year, age, sex, and cohort (cumulative incidence of 
CRC in the study cohort was 830 per 100 000 over the period 1987–2009)35. We present both risk estimates from 
unadjusted models and from models adjusted for potential confounders. Adjusted estimates were adjusted for 
BMI, smoking status, occupational and recreational activity, alcohol intake, and plasma B-vitamins folate and 
vitamin B6 (PLP) concentrations. We evaluated 2-way interactions between variables demonstrating the strongest 
independent relations to CRC risk in the BNs. Conditional probabilities calculated from estimated parameters 
of the networks were used to determine ORs over combinations of the variables with the cpquery function in the 
bnlearn R-package. ORs from conditional logistic regression models fitted with interaction terms were also calcu-
lated. The overall significance of the interactions was evaluated by fitting interaction terms using log-transformed 
metabolite concentrations or treating SNPs as continuous variables (labeled 0,1 and 2, representing copies of the 
less common allele).

Heterogeneity of the associations was evaluated by estimating BNs on data stratified by sex, follow-up time 
from blood sampling to diagnosis (above or below median follow-up of 8.2 years), tumor site (proximal colon, 
distal colon or rectum), and tumor stage (I&II or III&IV). For variables that appeared to differ among the strati-
fied BNs, we further evaluated heterogeneity with likelihood ratio tests using conditional logistic regression. The 
likelihood ratio tests used compared a conditional logistic regression model in which the risk association could 
vary across endpoints to a model in which all associations were held constant (or for interactions with sex: com-
paring a model with product terms to a model without)57.
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